Reality and conventions #4

This post continues a series of posts. The previous one is here.

Modern natural science attempts a systematic account of the causes of change in the physical world, and is willing to go against the appearance of the physical world if that will further its goals. This differs from the ancient Platonic attempt to “save the appearances” at all costs by placing appearances within an ad-hoc but meaningful system.

In one sense, philosophy is the helpmeet of science. It aids in the task of putting our conceptual household in order: tidying up arguments, discarding unjustified claims. But in another sense, philosophy peeks over the shoulder of science to a world that science in principle cannot countenance. As Professor Scruton put it elsewhere, “The search for meaning and the search for explanation are two different enterprises.” Science offers us an explanation of the world; it may start out as an attempt to explain appearances, “but it rapidly begins to replace them.” Philosophy seen as the search for meaning must in the end endorse the world of appearance. The New Criterion, vol. 12, no. 10

Saving the appearances famously led to tweaking Ptolemaic astronomy despite its inability to explain why celestial bodies should move in epicycles. The Newtonian system didn’t give ultimate explanations but at least it gave laws that applied on Earth and skyward.

Yet there is nothing “wrong” with saving appearances such as the motion of the Sun relative to the Earth. In that sense, geocentrism was never wrong despite generations of people being taught so. Whether saving the appearances or saving the system is a goal, both must accept some conventions that include things such as the celestial body of reference – or lack thereof.

One may legitimately pursue a phenomenal science that saves appearances by sacrificing some consistency in conventions. For example, the Moon is in orbit relative to the Earth and the Sun is in a different kind of orbit relative to the Earth. In order to save both of these appearances, one would have to use a gravitational dynamics for the Earth-Moon system and a levitational dynamics for the Earth-Sun system. Awkward, perhaps, but legitimate.