iSoul In the beginning is reality

Tag Archives: Philosophy Of Science

Philosophical justification and critique of science.

Wise knowledge

Presuppositions are a priori suppositions, usually unstated. They are not inevitable. Presuppositions may be replaced with suppositions. That is, presuppositions may be made explicit.

For example, someone might say, “I will flip a coin. If it is heads, I will adopt presupposition A; if it is tails, I will adopt presupposition B.” In that case, neither A nor B are presuppositions; they are suppositions that are chosen a posteriori.

Mathematics is the discipline that is based entirely on suppositions. It is purely conditional. “If X is supposed (or given), then Y follows necessarily.” If X is rejected, then something else may follow.

The existence of mathematics shows it is possible to have knowledge that is truly universal. Science is the attempt to mathematize all knowledge and remove all subjectivity. That is the “view from nowhere”. See here for how induction works through formal definitions and conditions.

But is it wise to remove all subjectivity? No, for the simple reason that it would turn us into mere objects. The person in us cries out, “I am not a number; I am a free man” (The Prisoner). We are subjects and so want a “view from somewhere”.

Read more →

Middle ontologies

As the previous post noted here, nominalism seeks a minimal ontology, that is, a minimum of qualities. This qualitative parsimony leads toward the ultimate minimum ontology: an ontology of one. That is, the assertion that there is only one quality, one kind of stuff, whatever it may be called – matter, energy, or whatever.

This is a bias toward one extreme. Compare the opposite extreme: quantitative parsimony, which leads toward the ultimate of one member in each kind of thing so that each thing is unique. This has the advantage that it allows the individuality of every thing to be emphasized rather than obscured by being merely one member of a large class of things.

But either bias is a bias and so predisposes the search for knowledge toward a biased answer. It would be better to adopt a neutral ontology, or seek one, in order to avoid biasing the result. Such an ontology would be between these two extremes, somewhere in the middle. That allows a great deal of flexibility for research and discussion, contrary to the take-it-or-leave-it attitude that goes with an extreme ontology.

A middle ontology could be a common sense ontology, at least as a starting point, since common sense recognizes some qualitative distinctions. A middle ontology could be a mid-entropy ontology, with some notion of middle to select the best frequency or probability distribution. In any case, the search for knowledge should prefer middle ontologies, and only if all middle ontologies fail should an extreme ontology be considered.

Scientific nominalism

Nominalism has three senses:

  1. A denial of metaphysical universals.
  2. An emphasis on reducing one’s ontology to a bare minimum, on paring down the supply of fundamental ontological categories.
  3. A denial of “abstract” entities.

William of Ockham, the name most associated with nominalism, agreed with the first and second senses, and in a lesser way, the third sense. The scientific principle called “Ockham’s razor” (or “Occam’s razor”) focuses on the second sense.

Ockham’s “nominalism,” in both the first and the second of the above senses, is often viewed as derived from a common source: an underlying concern for ontological parsimony. This is summed up in the famous slogan known as “Ockham’s Razor,” often expressed as “Don’t multiply entities beyond necessity.” Although the sentiment is certainly Ockham’s, that particular formulation is nowhere to be found in his texts. Moreover, as usually stated, it is a sentiment that virtually all philosophers, medieval or otherwise, would accept; no one wants a needlessly bloated ontology. The question, of course, is which entities are needed and which are not.

What this means for science is not a vague simplicity but qualitative parsimony:

This distinction is between qualitative parsimony (roughly, the number of types (or kinds) of thing postulated) and quantitative parsimony (roughly, the number of individual things postulated). The default reading of Occam’s Razor in the bulk of the philosophical literature is as a principle of qualitative parsimony.

Read more →

Physics and metaphysics

Physics and Metaphysics” is the English title of an essay by Pierre Duhem in Essays in the History and Philosophy of Science, translated by Roger Ariew and Peter Barker (Indianapolis: Hackett, 1996). It was originally published in 1893 as “Physique et métaphysique.” Below are some excerpts.

We have devoted ourselves above all to delineating the exact role of physical theories, which, in our view, are not more than a means of classifying and coordinating experimental laws. They are not metaphysical explanations that reveal to us the causes of phenomena. p.29

We regard the investigation of the essence of material tings, insofar as they are causes of physical phenomena, as a subdivision of metaphysics. This subdivision, together with the study of living matter, forms cosmology. This division does not correspond exactly to the peripatetic one. The study of the essence of things constitutes metaphysics in peripatetic philosophy. p.30

Read more →

Metaphysics and science

This post presents excerpts from Pierre Duhem’s The Aim and Structure of Physical Theory, first published (in French) in 1906, and translated into English in 1954 (Princeton University Press). See also the following post on Physics and metaphysics.

[I]f the aim of physical theories is to explain experimental laws, theoretical physics is not an autonomous science; it is subordinate to metaphysics. p.10

Now, to make physical theories depend on metaphysics is surely not the way to let them enjoy the privilege of universal consent. p.10

A physical theory reputed to be satisfactory by the sectarians of one metaphysical school will be rejected by the partisans of another school. p.10-11

Read more →

Science vs. metaphysics

Modern science began with a turn away from medieval debates about metaphysics to focus on how things happen, rather than a metaphysically-adequate why. This was an indifference to metaphysics, not a deliberate ignorance or repudiation of the subject.

But that began to change in the 19th century with the influence of materialism, secularism, and the professionalization of the sciences, culminating in TH Huxley’s effort to make the sciences “agnostic”. Huxley promoted science against other forms of knowledge, not in addition to them.

Agnosticism is of the essence of science, whether ancient or modern. It simply means that a man shall not say he knows or believes that which he has no scientific grounds for professing to know or believe. TH Huxley

His intention behind agnosticism was to establish and maintain epistemic merit of science without any unknowable, metaphysical or theological, apparatus. Science is the practice of agnosticism, and for this reason, our best way to knowledge. J. Byun

This is a form of scientism, an assertion that science is the pre-eminent or even the only legitimate source of knowledge. The irony is that scientism implicitly makes a metaphysical claim about the reality that can be known, which is the metaphysics of naturalism.

“Methodological naturalism” is the contemporary term but it amounts to the same thing: science must ignore or repudiate the possibility of other knowledge. Instead, the science community and its promoters should be indifferent to metaphysics so that regardless of whatever metaphysics people accept, they should also accept the claims of science.

Wonder vs. skepticism

It is often asked why the angel Gabriel treated Zechariah and Mary differently since their reaction was similar (Luke chapter 1). Note the parallel passages:

1:11-12 And there appeared to [Zechariah] an angel of the Lord standing on the right side of the altar of incense. And Zechariah was troubled when he saw him, and fear fell upon him.

1:28-29 And [Gabriel] came to [Mary] and said, “Greetings, O favored one, the Lord is with you!” But she was greatly troubled at the saying, and tried to discern what sort of greeting this might be.

Gabriel responded similarly at first:

1:13 But the angel said to him, “Do not be afraid, Zechariah, for your prayer has been heard, and your wife Elizabeth will bear you a son, and you shall call his name John.”

1:30-31 And the angel said to her, “Do not be afraid, Mary, for you have found favor with God. And behold, you will conceive in your womb and bear a son, and you shall call his name Jesus.”

Their responses were seemingly alike:

1:18 And Zechariah said to the angel, “How shall I know this? For I am an old man, and my wife is advanced in years.”

1:34 And Mary said to the angel, “How will this be, since I am a virgin?”

But Gabriel’s reaction was different:

1:19-20 And the angel answered him, “I am Gabriel. I stand in the presence of God, and I was sent to speak to you and to bring you this good news. And behold, you will be silent and unable to speak until the day that these things take place, because you did not believe my words, which will be fulfilled in their time.”

1:35 And the angel answered her, “The Holy Spirit will come upon you, and the power of the Most High will overshadow you; therefore the child to be born will be called holy—the Son of God.”

So he answered Mary’s question but rebuked Zechariah’s skepticism.

Asking questions and being skeptical are often confused. People with questions are said to be skeptical, and those who are skeptical are said to be just asking questions. What is the difference?

The difference is illustrated in the word “know” in Zechariah’s response (1:18): “How shall I know this?” The skeptic focuses on what they know or don’t know. But the questioner wonders and looks for further information.

It is often said that science requires skepticism, but what it actually requires is wonder and curiosity – asking questions to find out more, never being content with what is known so far. Skepticism adds nothing to science but undermines it since skepticism is essentially doubt about knowledge.

Aristotle wrote that philosophy starts with wonder. Science, a child of philosophy, starts with wonder, too, and grows with wonder and curiosity about everything. Questions grow from wonder, and lead to further knowledge. That is the opposite of skepticism.

Science proper

Science is the study of change. Where there is no change, there is no science.

It is said that chemistry is the study of matter but it is really change that is studied:

Every chemist I know studies change. Some chemists study a material before it has changed. Other chemists study a material after it has changed. Some even study a material while it is changing. Many materials are made specifically to resist change. For some chemists, the manner (pathway) in which a material changes is most important. There are also those who want to make a new material out of an old material and will spend years looking for a way to do it.

Mechanics is the part of physics that studies motion, which is a kind of change. But all of physics studies physical change in some respect. Thermodynamics, for example, studies change in heat and temperature.

It is said that evolutionary biology studies change in organisms and species over time. But all of biology studies change in some respect – genetic change, developmental change, ecological change, etc.

It is said that history is the study of change over time but what distinguishes history is the determination of what actually happened in the past, and why particular events happened. Once that has been determined, the various sciences can study the deltas – the differences between peoples or times or places.

Because science is the study of change, science always begins with a conditional. “If” is the beginning of science. The study of reality in itself or the ultimate origin of anything is beyond science.

Ultimate boundary conditions are exogenous to science. There may be practical limits to what can be observed – as the discussion of superluminal speeds shows. But whether or not a practical limit is ultimate is a matter of metaphysics or religion, as is knowledge of the actual existence of anything posited by science.

Thus science is dependent on other disciplines – notably, history, metaphysics, and theology – to say whether or not its constructs actually exist. Or else science is taken to be only a theoretical discipline, similar to mathematics.

Upper and lower causes

This post continues the discussion posted here.

Aristotle’s four causes (or my version of them) may be divided into two groups: an upper group and a lower group. I call the upper group hyperaitia (from Greek hyper, over, above + aitia, cause) and the lower group hypoaitia (from Greek hypo, under, beneath + aitia, cause):

Causes Δ time Δ space
hyperaitia final formal
hypoaitia efficient material

Natural science uses only the lower causes; it is hypoaitial. One might say that Aristotle’s science was hyperaitial since that is where he started. His metaphysics was hylemorphic (or hylomorphic) since it posited that everything has form and matter.

A science that uses only efficient and formal causes may be called dynamorphic. Such is the emerging science of dynamic information.

A top-down science or process, etc. may be called hyperhypo. A bottom-up science or process, etc. may be called hypohyper. A form applied to a material is hyperhypo. A material with emerging form is hypohyper.

Inverse causes

I’ve written about Aristotle’s four causes before (such as here and here). This also continues the discussion of observers and travelers, here.

Forward kinematics refers to the use of the kinematic equations of a robot to compute the position of the end-effector (the device at the end of a robotic arm) from specified values for the joint parameters. Forward kinematics is also used computer games and animation. Inverse kinematics makes use of the kinematics equations to determine the joint parameters that provide a desired position for each of the robot’s end-effectors.

In other words, forward kinematics is for finding out what motion happens given particular inputs, whereas inverse kinematics is for determining how to move to a desired position. In terms of the four Aristotelian causes or explanatory factors, forward kinematics is concerned with the efficient and material causes, and inverse kinematics is concerned with the final and formal causes.

The surprising thing is that these two kinds of causes (higher and lower) are inverses of one another.

Higher Final Formal
Lower Efficient / Mechanism Material

From the lower perspective one begins with some material. From the higher perspective one begins with the objective. From the lower perspective forces and laws make things happen. From the higher perspective following plans gets the job done.

One can see rôles parallel to the causes:

Traveler Set the destination Plan the trip
Observer Observe the motion See the material

And in robotics (or animation):

Inverse Pick the end position Plan the motions
Forward Make the motions Pick the device

One could say that forward kinematics is for scientists and inverse kinematics is for engineers since the latter incorporate objectives and designs in their work but the former are focused on observation only. To go beyond observation scientists would have to open up to formal and final causes.