relativity

Relativity posts

Opposite velocities and lenticities

Two opposite velocities — or lenticities — are invariant over time and space. The standard Galileian transformation in the space-time domain is Velocity u transforms as Velocity is not invariant relative to a single inertial observation, but it is relative to observations with opposite relative velocities: That is Harmonic velocities are opposites and so are […]

Opposite velocities and lenticities Read More »

Independent and dependent variables

There are two kinds of independent variables: (1) functional independent variables, and (2) physical independent variables. To avoid confusion an independent variable it is standard that a variable be of both kinds, since being of one kind does not imply being of the other kind. A physical independent in an experiment remains the independent variable

Independent and dependent variables Read More »

Michelson-Morley experiment

This post relates to a previous post here. The Michelson-Morley experiment is a famous “null” result that has been understood as leading to the Lorentz transformation. However, an elementary error has persisted so that the null result is fully consistent with classical physics. The Michelson-Morley paper of 1887 [Amer. Jour. Sci.-Third Series, Vol. XXXIV, No.

Michelson-Morley experiment Read More »

Michelson-Morley re-examined

Revised 2022-08-23. There are many expositions of the famous Michelson-Morley experiment (for example here) but they all assume the variable in common is time, which is not the case. In fact, distance is the variable in common, and so the experiment is temporo-spatial (1+3). Let us examine the original experiment as it should have been

Michelson-Morley re-examined Read More »

Principle of relativity

The relativity of uniform motion was stated by Galileo in the 17th century, though it was known to Buridan in the 14th century. Galileo’s statement of the principle of relativity is in terms of ships in uniform motion: … so long as the motion is uniform and not fluctuating this way and that. You will

Principle of relativity Read More »

Reflected motion

This post was inspired by Chandru Iyer’s post here. Consider a light ray sent a certain distance s that is immediately reflected back. According to Newtonian mechanics if a light ray travels at speed c, then for a body moving at speed v relative to the stationary frame, the light ray should travel at the

Reflected motion Read More »

Space and time reciprocity

This post is related to others, such as here. Consider an analogue clock: The movement of the hand clockwise relative to the dial is equivalent to the movement of the dial couter-clockwise relative to the hand. That is, the motion of the hand relative to the dial corresponds to the opposite motion of the dial

Space and time reciprocity Read More »

Inverse units, inverse algebra

The use of space (stance) as an independent variable and time as a dependent variable leads to inverse ratios. There is pace instead of speed, that is, change in time per unit of length instead of change in length per unit of time. But a faster pace is a smaller number, which is counterintuitive and

Inverse units, inverse algebra Read More »