relativity

Relativity posts

Simultaneity without clocks

Watches didn’t always exist. Neither did clocks that were transportable or manufactured in large quantities. I mention this because one way to determine the simultaneity of events is to have synchronized clocks transported to multiple locations – even an endless number of locations in theory. How can an observer determine the simultaneous events from their […]

Simultaneity without clocks Read More »

Relativity alone

In a paper titled Nothing but Relativity (Eur. J. Phys. 24 (2003) 315-319) Palash B. Pal derived a formula for transformations between observers that is based on the relativity postulate but not a speed of light postulate. In a paper titled Nothing but Relativity, Redux (Eur. J. Phys. 28 (2007) 1145-1150) Joel W. Gannett presented

Relativity alone Read More »

6D invariant interval

Since one may associate either the arclength (travel length) or the arctime (travel time) with direction, one might think that the full coordinates for every event are of the form (s, t, ê), with arclength s, arctime t, and unit vector ê. Since the direction is a function of either the arclength or the arctime,

6D invariant interval Read More »

Ten meanings of time

Carlo Rovelli’s “Analysis of the Distinct Meanings of the Notion of “Time” in Different Physical Theories” (Il Nuovo Cimento B, Jan 1995, Vol 110, No 1, pp 81–93) describes ten distinct versions of the concept of time, which he arranges hierarchically. Here are excerpts from his article: We find ten distinct versions of the concept

Ten meanings of time Read More »

Algebraic relativity

Relativity may be derived as an algebraic relation among differentials. Consider motion in the x spatial dimension, with a differential displacement, dx, differential velocity displacement, dv, and arc (elapsed) time t: dx² = (dx/dt)²dt² = dv²dt² =  d(vt)². Let there be a constant, c: dx² = d(vt)² = d(cvt)²/c² = d(ct)² (v/c)² = d(ct)² (1 –

Algebraic relativity Read More »

Four space and time dimensions

Since the development of relativity theory, space and time have been combined in a four-dimensional continuum. Because the speed of light is an absolute value in relativity theory, it acts as a conversion factor between space and time. Accordingly, the four dimensions may be understood as any combination of space and time: 4 + 0:

Four space and time dimensions Read More »

A new geometry for space and time

This blog has described how as the distances between places cover three dimensions of space, so the durations between events cover three dimensions of time. One way of looking at this is as a map with the distance and duration given between places, such as this from the Interstate Drive Times and Distances: There are

A new geometry for space and time Read More »

Dimensions of space and time

As I’ve shown, there are three dimensions of time as well as space. That makes six dimensions in all, which I’ve written about before, such as here. There may be reasons to use the full potential six dimensions but usually it is better to contract that to four or two dimensions. We need terms to

Dimensions of space and time Read More »

Relativity of time at any speed

It is not well known that the Theory of Relativity is almost misnamed. Relativity was well known in physics since Galileo Galilei. That is, the relativity of space was well known. With Albert Einstein’s derivation of the Lorentz transform, the relativity of time was introduced. But the relativity of time was not of the same

Relativity of time at any speed Read More »

Kinds of relativity

A simple way to look at the world is to assume that space and time are absolute: the locations, the distances, the durations, speeds, and so forth as measured by one person are the same for everyone. That is, if my automobile speedometer shows 50 mph (80 kph), then the police with a laser gun

Kinds of relativity Read More »