iSoul In the beginning is reality.

Category Archives: Science

Science particularly as related to creation and the creation-evolution controversy

Relativity of orientation

The Principle of Relativity states that the laws of physics are the same in all inertial frames of reference (IRF). Since a frame of reference includes an orientation, that is, a convention as to which rectilinear semi-axes are positive (and so which are negative), and since there is no preferred frame of reference, each frame can have its own orientation. Galilean relativity have what is called “body-fixed” orientations.

A frame of reference is called “body-fixed” if it is conceptually attached to a rigid body, such as a vehicle, watercraft, aircraft, or spacecraft. Body-fixed frames are inertial frames if the body to which the frame is affixed is in inertial motion. The body is usually referenced in anthropomorphic terms, such as its left, right, face, or back, although some craft have their own terms, notably, ships with port, starboard, fore, and aft.

Consider the following scenario of cars in five lanes, oriented so that their forward direction is positive, with their unsigned speeds shown relative to the two parked cars in the middle lane:Six cars in five lanesCompare the direction of cars B, C1, C2, and D according to the frames attached to the five cars:

Read more →

Velocity reciprocity clarified

This is a follow-on to posts here and here.

It is common to derive the Lorentz transformation assuming velocity reciprocity, which seems to say that if a body at rest in frame of reference is observed from a frame of reference S that travels with relative velocity +v, then a body at rest in frame of reference S will be observed from the frame of reference to be traveling with velocity –v. But that’s not the case.

Consider the typical scenario in which a person standing on the earth (embankment, station) with frame of reference S observes a person sitting in a railway car with frame of reference . Say they are both waving their right hands and their frame of reference follows a right-hand orientation: the positive direction is toward their right.

Person waves to train

The first illustration shows the scenario from behind the observer standing on the earth in frame S, who observes the passenger sitting in the train moving to their right with velocity +v. The scenario is typically presented from only this perspective, that of an observer at rest in frame A, even if the perspective of an observer at rest in frame is described.

Read more →

Galilean relativity defended

Galilean relativity is a relational theory of motion as a function of time, which leads to the Galilean transformation. Here is a defense of Galilean relativity from two postulates:

(1) The Galilean principle of relativity, which states that the laws of mechanics are invariant under a Galilean transformation.

(2) A convention that rectilinear coordinates for frames of reference follow the right-handed rule: the unit vectors i, j, and k are related as i × j = k.

The Galilean transformation for constant motion on the x axis is x´ = xvt,  and t´ = t. Postulate (2) means if the extended right-hand thumb points to the positive X axis and the extended right-hand first finger points to the positive Y axis, then the right-hand middle finger points orthogonally to the positive Z axis.

The standard configuration for derivations of the Lorentz transformation consists of two inertial frames of reference moving relative to each other at constant velocity, with Cartesian coordinates such that the x and x′ axes are collinear facing the same direction:

Axes with same orientation

In this case the velocity of S´ relative to S is +v and the velocity of S relative to S´ is –v. This is called the principle of velocity reciprocity.

Read more →

Conventions and properties

Everything in science is a combination of conventions and properties. For example, frames of reference have certain conventions in common and particular properties that each individual frame has. The definition of a frame of reference is the first convention. Every frame of reference has an origin and at least the possibility of one or more coordinate axes. But the particular origin of a frame need not be in common with other frames; it is a particular property of one frame.

Definitions and postulates are conventions. Stipulations and measurements are properties. Physical laws are conventions with the appropriate supporting definitions and postulates. Interpretations of events become conventions when they are widely accepted.

The SI metric system is the international convention for measurement (i.e., metrology). Individual measurements are properties of things. Kinematics and dynamics have a convention for simultaneity (as well as simulstanceity). The orientation of orthogonal axes follows a convention for the order of the axes and the direction of positivity.

Two principles of velocity reciprocity

Velocity reciprocity in relativity theory is the relation between two observers, each associated with a frame of reference and moving at different, but constant, velocities. That is, an observer-frame S observes another observer-frame traveling with velocity +v relative to observer-frame S. A velocity reciprocity relation concerns the velocity of S that is observed by . Einstein’s principle of velocity reciprocity states that each velocity is the same magnitude (speed) but is in the opposite direction. That is, the velocity of S observed by  is –v.

Two frames with same orientation

Einstein’s principle of velocity reciprocity reads

We postulate that the relation between the coordinates of the two systems is linear. Then the inverse transformation is also linear and the complete non-preference of the one or the other system demands that the transformation shall be identical with the original one, except for a change of v to −v. Ref.

Read more →

What Galileo really demonstrated

Galileo Galilei’s inclined plane experiment is described in his work Dialogues Concerning Two New Sciences, which I quote from the Dover edition. He speaks (through his character Salviati) of “those sciences where mathematical demonstrations are applied to natural phenomena, as is seen in the case of perspective, astronomy, mechanics, music, and others where the principles, once established by well-chosen experiments, become the foundations of the entire superstructure.” (p.178) This is the ancient method of science that Galileo applied to experiments, establishing the foundation of modern science.

Galileo states his Theorem II, Proposition II as:

The spaces described [i.e., traced] by a body falling from rest with a uniformly accelerated motion are to each other as the squares of the time-intervals employed in traversing these distances. (p.174 or p.142 on the OLL edition)

But it has just been proved that so far as distances traversed are concerned it is precisely the same whether a body falls from rest with a uniform acceleration or whether it falls during an equal time-interval with a constant speed which is one-half the maximum speed attained during the accelerated motion.

Then he describes his experiment:

Read more →

Science and Hypothesis excerpts

What follows are excerpts from the book Science and Hypothesis by Henri Poincaré, translated (1905) from La Science et l’hypothèse (1902).

p.xxiii The latter [definitions or conventions] are to be met with especially in mathematics and in the sciences to which it is applied. From them, indeed, the sciences derive their rigour; such conventions are the result of the unrestricted activity of the mind, which in this domain recognises no obstacle. For here the mind may affirm because it lays down its own laws; but let us clearly understand that while these laws are imposed on our science, which otherwise could not exist, they are not imposed on Nature. Are they then arbitrary? No; for if they were, they would not be fertile. Experience leaves us our freedom of choice, but it guides us by helping us to discern the most convenient path to follow.

p.xxv Space is another framework which we impose on the world. Whence are the first principles of geometry derived? Are they imposed on us by logic? Lobatschewsky, by inventing non-Euclidean geometries, has shown that this is not the case. Is space revealed to us by our senses? No; for the space revealed to us by our senses is absolutely different from the space of geometry. Is geometry derived from experience? Careful discussion will give the answer—no! We therefore conclude that the principles of geometry are only conventions; but these conventions are not arbitrary, and if transported into another world (which I shall call the non-Euclidean world, and which I shall endeavour to describe), we shall find ourselves compelled to adopt more of them.

Read more →

Contraries as duals

Contrariety is a property of pairs of propositions, but it also applies to pairs of terms or concepts. “Two general terms are contraries if and only if, by virtue of their meaning alone, they apply to possible cases on opposite ends of a scale. Both terms cannot apply to the same possible case, but neither may apply.” (Aristotelian Logic, Parry and Hacker, p. 216) Opposite ends of a scale are also called extremes, which are contrasted with means between the extremes.

Every pair of contraries forms a duality by inverting the scale of which they are opposites. For example, quantitative contraries such as rich and poor become poor and rich when the scale is inverted. Every measurement scale can be inverted so in this sense a measurement and its inverse are a contrary pair that forms a self-duality. Every ratio or mapping of two variables, f(x, y), can be interchanged and form a duality, f(y, x). For example, the equation v = Δst can be interchanged to become u = v−1 = Δts.

The scale may be qualitative, too. For example, the qualitative contraries up and down become down and up, respectively, by looking upside-down. The contraries left and right become right and left when looked at facing the other way. Extension and intension are opposites that may be inverted by interchanging them with each other. Compare the duality of top-down and bottom-up perspectives.

“A pair of terms is contradictory if and only if by virtue of their meaning alone each and every entity in the universe must be named by one or the other but not both.” (Aristotelian Logic, Parry and Hacker, p. 216) May the terms X and not-X be made into duals? That depends. If not-X is the contradictory of X and means everything other than X, that includes things that are non-dual. But in some cases, not-X means the opposite of X, so that contraries are indicated.

Science, unity and duality

It is a Christian concept (or at least a theistic concept) that the world we inhabit is a universe. The existence of the universe requires there to be a perspective that encompasses the whole of the world, which is the perspective of a transcendent divinity. The universe is thus the whole of creation.

It is said that natural science studies the universe, but natural science today does not recognize a transcendent being, and so cannot genuinely recognize the universe. What can natural science recognize as the world that it investigates?

Natural science recognizes law and chance, the regular and the stochastic, but what determines the mix of law and chance? There are three possibilities: (1) the mix of law and chance is determined by law, in which case science investigates a cosmos; (2) the mix of law and chance is determined by chance, in which case science investigates a chaos; or (3) the mix of law and chance is determined by another mix of law and chance, which, if this duality continues at every level, indicates a dualism of law and chance as two independent principles for science to investigate.

Natural science seeks unity, so option (3) is distasteful. Option (2) is distasteful for aesthetic reasons, as well as for its lack of meaning. Option (1) is the least distasteful, and the science community increasingly states that they investigate a cosmos, a world of order that we inhabit. But mere law and order seems fatalistic, and the reality of chance keeps rearing its head, which undermines (1).

This pattern of seeking unity and finding duality occurs in other ways, too. Space and time are duals, but can they be unified by space or time? Either space alone is real (and time is unreal), or time alone is real (and space is unreal), or there is a duality of space and time that cannot be unified. Again, the first option is the most popular, though it has the same weaknesses as above.

The most satisfying answer for these dualities is that science investigates a universe, a unity that can be fully grasped only transcendently, but may be glimpsed by us. This gives us confidence that there is a unity, even if we haven’t yet found how that unity is shown by observation and experimentation. It is a qualified unity, which is not troubled by duality, and does not seek to force unity on a diverse universe.

Biological classes and ancestries

Taxonomy is the science of classification. Taxonomy applied to biology is a systematic approach to classifying organisms. It can be applied to all organisms at a particular time, throughout time, or within any context. Once a classification is determined, other questions arise such as whether there is an independent reason that organisms are in the same class together.

The basic question in all classifications is whether the objects to be classified fit within a class or belong to another class. The goal of a classification is to minimize the within-class differences and maximize the between-class differences. This is often done by defining a distance metric that quantifies the differences.

Carl Linnaeus is known as the father of modern taxonomy who formalized the binomial nomenclature and called the lowest classes species and genus (no doubt after Aristotle’s method of defining with species and genera). His original expectation was that these biological species were natural kinds that do not change over time. With the discovery that fossils came from dead organisms, it became clear that some of his species had changed over time.

The solution to this problem was to reclassify organisms both living and dead in a new classification system. But this was easier said than done since it took years for fossils to be examined. Meanwhile, people were anxious to know how all the diversity of species arose.

Charles Darwin’s hypothesis was soon adopted: species are temporary population groupings with universal common ancestry. If all species are temporary, there is only one fixed class: the class of all species. Others hypothesize there are multiple classes of species that are fixed and have separate ancestries, which supports design or special creation.

How can this dispute be resolved? Elliott Sober compares these two hypotheses in his book Evidence and Evolution. Sober argues for a likelihood approach to determining the better of two hypotheses. The law of likelihood states that evidence E favors hypothesis H1 over H2 if and only if the probability of E given H1 is greater than the probability of E given H2, or in symbols, P(E | H1) > P(E | H2). Note that this is a comparative approach; it only works when comparing two specific hypotheses.

In this case, the context is all species on the earth over all the history of life on earth. Hypothesis H1 states that there are multiple classes of species that span the history of life on earth, each class with separate ancestry. Hypothesis H2 states that there is only one class of species that span the history of life on earth, all with common ancestry.

Sober notes that Darwin routinely inferred common ancestry if there was some similarity between species. Sober calls this modus Darwin. It is better to have an overall metric of distance between species than rely on a few similarities. However, there is no generally accepted distance metric for species. In its absence, we can still make some inferences.

Read more →