Conventions in science

The main convention of modern science is that it is based on observation only. This convention treats experiments, interventions, and projectiles as if they always happened naturally. Then it is easy to assume, for example, that the transmission and reception of light are at the same speed, a convention promoted as a fact.

It also makes it easy to assume that heavier bodies have the most effect in dynamics, since they move the least and so are seemingly the least impacted. This is like the observer who sees but does not intervene, and so is little impacted by what happens (quantum mechanics notwithstanding).

But this obscures the fact that scientists do perform experiments and do intervene in various ways – and people in general do, too, as they move about. It also obscures the fact that conventions determine much of science.

Take dynamics, for example. Newton set the convention by taking the ancient concept of gravitation and ignoring its inverse, the ancient concept of levitation. One could as well reverse the convention and take levitation as the standard. That would mean that instead of distance weighted by mass for the barycenter (Greek barys, heavy) as the center of motion, the weighting is by inverse mass for the ‘elaphrocenter’ (Greek elaphros, light, unheavy) of motion.

It so happens that observation of the Sun orbiting the Earth fits well with the inverse convention. The irony is that science purports to follow observation, but ends up discounting many ordinary observations, not because they are wrong, but because they are against conventions.