Knowing

epistemology, science, kinds of knowledge, methodology

Uniform rate of the rate of change

The Merton Rule, which dates to the Middle Ages, relates a uniform change rate to its initial and final rates. Because of its main application, it is also called the Mean Speed Theorem, which in modern language states that a uniformly accelerating body over a period of time traverses the same distance as the product […]

Uniform rate of the rate of change Read More »

Moral and ethical distinctions

What is moral exists without a necessary opposite. Moral truth, goodness, and beauty are defined as those that exist on their own, without the necessity of a contrary (inner) or contradictory (outer) opposite. God is moral because God exists without a necessary opposite. Whatever is of God is also moral. Whatever contradicts God or something

Moral and ethical distinctions Read More »

Two kinds of induction

Historically, there are two kinds of induction, called here the postulational and the hypothetical. Postulational induction (cf. material induction) is the induction practiced in ancient and early modern times in which empirical induction leads to essential definitions and universal postulates for subsequent deduction. This is the Socratic view of induction: “in modern philosopher’s technical terms—the

Two kinds of induction Read More »

Converse physics

Velocity is defined as: where x is the displacement and t = ‖t‖ is the independent time interval, the distime of a parallel reference motion. The inverse of v is the function defined by the reciprocal of this derivative: The converse of v is w, the lenticity, which is defined as: where t is the

Converse physics Read More »

Symmetry of length and duration

There is a symmetry principle for length and duration: Measures of length and duration are symmetric and the forms of equations remain the same if all measures of length are interchanged with their corresponding measures of duration and vice versa. The three-dimensionality of length is fully reflected in the three-dimensionality of duration. This is a

Symmetry of length and duration Read More »

Transformations with 3-dimensional time

Following the previous post here, we use Jacobian matrices to transform location and chronation vectors between inertial observers. As before, let matrices be written with upper case boldface. Let vectors be written in lowercase boldface and their scalar magnitude without it. Velocity = V, lenticity = W, displacement = x, distimement = z, independent distance = s, independent distime

Transformations with 3-dimensional time Read More »

Definitions with 3-dimensional time

In order to combine the three dimensions of length space and three dimensions of duration space in definitions for motion in six dimensions (3+3), it is necessary to use Jacobian matrices. The 3+1 and 1+3 dimensional definitions are simplifications of these. Let matrices be written with upper case boldface. Let vectors be written in lowercase boldface

Definitions with 3-dimensional time Read More »

General Galilean invariance

The following is generalized from the explanation of Galilean invariance here. Chorocosm (inertial frames) Among the axioms from Newton’s theory are: (1) There exists an original inertial frame in which Newton’s laws are true. An inertial frame is a reference frame in uniform motion relative to the original inertial frame. (2) All inertial frames share

General Galilean invariance Read More »

Worlds of motion

Kinecosm is the world of motion, which is the subject of kinematics. Since the extent of motion has two measures: length and duration, the kinecosm has two subworlds: Length space is the three-dimensional world of length, which is commonly called space. Duration space is the three-dimensional world of duration. Chorocosm is length space with time.

Worlds of motion Read More »