iSoul Time has three dimensions

Tag Archives: Science

sciences in general, what they are and their methods

Physical history

At the highest level of classification, history may be divided into human history (better known simply as ‘history’) and physical history. The former is a large subject with many subdivisions, while the latter is usually turned over to the physical sciences. This is a pity since science and history are different disciplines (see posts here). What follows is a description of physical history as distinct from physical science.

History requires an agent of some kind. The environment is the proxy for an agent in evolutionary science. In physical history the agent is either humanity or one or more non-physical beings that connect to the physical world at its boundaries. The metaphysics of the latter are of no interest here, only their possibility. In other words, the physical universe has boundary conditions that are given; they are not a result of physical laws or processes.

But this sets up a potential conflict between a boundary condition which could have been the result of physical laws or process but was not. It would be simple to assume that all boundary conditions are such that they could not have been the result of physical laws or processes. But that assumes the limits of physical laws or processes are known, when they are to be determined rather than assumed.

Accordingly, the limits of physical laws and processes are themselves a matter of investigation. In other words, such limits are an open question. A good example of this is the argument for the existence of design in the physical world apart from human design. From human design we know something of what design is; if the physical world exhibits the features of human-like design but were not designed by humans, then a boundary condition has been found.

Otherwise, physical history is like human history. Physical particulars of the past are at the forefront, and universals of physical science are in the background. Whatever might be determined by physical science is acknowledged but the significant changes, the physical catastrophes and surprises, are granted a much greater rôle. There will no doubt be controversies between those who place much weight on key events versus those who look to the slow accumulation of little changes but such is usual for history.

Cycle of science

There is a well-known alternation of induction and deduction in science (click to enlarge):

induction-deduction cycleThe induction phase consists of data collection, data analysis, and model development. The deduction phase consists of taking the model, making hypothetical inferences, and following up with experiments that lead to new data collection. Then the cycle repeats.

data collection-model development cycle Read more →

Isaiah Berlin on history and science

The following (long) excerpts are from Isaiah Berlin’s article “History and Theory: The Concept of Scientific History”, published in History and Theory 1 (1):1 (1960). Republished in Concepts and Categories: Philosophical Essays. NY: Viking Press, 1979. (online here).

HISTORY, according to Aristotle, is an account of what individual human beings have done and suffered. In a still wider sense, history is what historians do. Is history then a natural science, as, let us say, physics or biology or psychology are sciences? And if not, should it seek to be one? And if it fails to be one, what prevents it? Is this due to human error or impotence, or to the nature of the subject, or does the very problem rest on a confusion between the concept of history and that of natural science? These have been questions that have occupied the minds of both philosophers and philosophically minded historians at least since the beginning of the nineteenth century, when men became self-conscious about the purpose and logic of their intellectual activities. But two centuries before that, Descartes had already denied to history any claim to be a serious study. Those who accepted the validity of the Cartesian criterion of what constitutes rational method could (and did) ask how they could find the clear and simple elements of which historical judgements were composed, and into which they could be analysed: where were the definitions, the logical transformation rules, the rules of inference, the rigorously deduced conclusions? While the accumulation of this confused amalgam of memories and travellers’ tales, fables and chroniclers’ stories, moral reflections and gossip, might be a harmless pastime, it was beneath the dignity of serious men seeking what alone is worth seeking – the discovery of the truth in accordance with principles and rules which alone guarantee scientific validity.

Read more →

History and science combined

For previous posts on history and science, see here.

History and science are different kinds of knowledge. History is based on the particulars that go into narratives. Science is based on the universals that go into theories.

History is focused on the matter and science is focused on the form, in the Aristotelian sense. The nature of something is its essence, its participation in universals, which is why there are natural sciences. Social sciences look at the form of human interaction. The term natural history is an older term for a scientific investigation into the natural world, especially biology, not a history in the modern sense.

The matter of something is its key particulars. Physical history is the investigation of the key particulars of physical objects in the past resulting in a narrative. This might be called natural history, but that term has meant science so it would be confusing. The investigation of the key particulars of documents in the past resulting in a narrative is simply called history.

History and science can be combined to explain something in the past. Yes. This is often called science but it is mainly history, with science assisting. For example, the investigation leading to the conclusion that the extinction of the dinosaurs was caused by a large asteroid or volcano is physical history that is commonly called science. Key particulars explain what happened. Science provides support. The result is a narrative, not a theory. (See here.)

The explanation of an event or series of events is history, since the particulars of events are history, even if science takes a supporting rôle. The explanation of a phenomenon or multiple phenomena is science, since their explanation depends on their nature, even if history takes a supporting rôle.

Repeating events entail universals that require science for explanation. Non-repeating events entail particulars that require history for explanation. Ancient mythology tried to explain repeating events through particulars, e.g., Zeus’ anger explains lightening, as if their nature was irrelevant. Modern mythology tried to explain unique events through universals, as if their substance was irrelevant.

“Creation science” concerns created universals. “Creation history” concerns created particulars.

Intellectual hierarchies

Societies have an intellectual hierarchy reflected in their academic hierarchy that exhibit their scale of concepts and values. There are basically three groups of intellectual disciplines: the study of divinity (theology), the humanities, and the sciences. There are six possible ways of ordering these three, which shows the intellectual state of a society.

(1) Theology, humanities, sciences: This is the medieval and Renaissance order.

(2) Theology, sciences, humanities: This is the early modern order, which is deistic with scientific realism.

(3) Humanities, theology, sciences: This is the conservative Catholic order, which is humanistic and traditionalist.

(4) Humanities, sciences, theology: This is the liberal Catholic order, which is humanistic with scientific realism.

(5) Sciences, theology, humanities: This is the conservative Protestant order, which is scientistic with theological realism.

(6) Sciences, humanities, theology: This is the late modern order, which is scientistic and humanistic.

Order number (1) is the proper one because it places the highest truth (God) first, then humanity second, then the world after these are properly understood.

Deep time postulate

This subject was previously mentioned, e.g., here.

James Hutton proposed introducing deep time into modern science in 1788. In the early 19th century it was accepted for the geologic time scale. Biologists followed with Darwinism in the late 19th century. Astronomers accepted it to explain cosmology.

What’s wrong with the deep time postulate (DTP)?

The DTP is a large expansion of explanatory resources. It may be compared with explaining crimes by assuming that everyone has access to a large amount of cash. That may make it easier to explain crimes, but such an assumption leads to poor quality explanations.

Similarly, the DTP makes scientific explanations easier, but not better. The more time there is, the more time that one has to fit all the events that might have happened to bring about some state of affairs. But easier does not make better.

This is most egregious in evolutionary biology, in which the possibility of the extremely unlikely happening becomes seemingly more likely the more time there is. It leads to the evolutionary imagination running riot with possibilities. Such a science turns away from what actually occurred.

The DTP invents a whole history that is discontinuous with history based on documents and testimonies. Such a time is not the time of memory but of calculation. It obscures the difference between science and history. History seeks key particulars, whereas science looks for universals. It will not do to replace history with science, as the 19th century ideologues tried to do (Auguste Comte, Herbert Spencer, Karl Marx).

Science is based on induction, not explanation. The slow accumulation of evidence, the incremental formation of hypotheses and laws, and experimental testing are the hallmarks of science. Grandiose postulates are contrary to this careful effort. The DTP should be rejected.

Science posts

Science

Today the word science usually means naturalistic science. Historically, naturalism was not dominant in modern science until the nineteenth century, when it was promoted by those who were called “naturalists” (not to be confused with a naturalist as someone who studies natural history). These naturalists promoted the idea that science was limited to naturalism. They were adept at taking leadership of science at a critical time when it was becoming professionalized and supported by government largesse.

Since naturalism is a false philosophy, science today is alienated from truth. The intelligent design movement challenges the idea that science is limited to naturalism. The creation science movement, which is related but independent, denies naturalism and much of the science built upon naturalism, including evolution and deep time. While these movements are small, it is important to remember that they stand in a tradition that goes back to the first centuries of modern science. The science of Galileo, Newton, and other great scientists of the past was not naturalistic science.

Science and terminology

Science is knowledge (scientia) that is systematically gained and/or organized. That entails that the terminology of science be systematic, i.e, a nomenclature rather than a hodgepodge of terms. This can make discussions about science hard since people have to learn a body of nomenclature before understanding a science. This applies to all sciences, whether natural sciences, social sciences, historical sciences, or subjects with some systematization such as systematic theology.

Read more →

Design and evolution

I last wrote about design here.

What is the essential element of a design? Dictionaries define design in terms of a plan but that concerns how a design is recorded or communicated rather than the design itself. I suggest that the essential element of a design is the necessity of a trade-off.

To define a trade-off first define incompatible qualities as qualities that contain contraries, for example, doing something accurately and speedily. An increase in accuracy causes a decrease in speed and an increase in speed causes a decrease in accuracy. Accuracy and speed are not contraries but accuracy contains slowness and speed contains inaccuracy, which makes accuracy and speed incompatible.

A trade-off is the situation calling for a selection of the degree of two incompatible or contrary qualities. A design is the selection of the degree or amount of two incompatible qualities or things. The design decision may be made by maximization of something desirable, such as profit, or minimization of something undesirable, such as cost. Hence optimization results in a design.

Evolutionary algorithms are solution-space trial and error search algorithms with stochastic optimization. They are based on concepts from evolutionary biology. Their result is an optimum solution within the given solution space. Because of the stochastic element of evolutionary algorithms, it may seem as if the computer made the optimization decision and so the solution was not designed.

Read more →

Generic units of measure

Customary units of measure such as the foot and the pound are suitable for everyday purposes such as measuring the dimensions of a person or a room. Metric (SI) units of measure such as the Kelvin and the kilogram are suitable for scientific purposes. Some metric units are suitable for everyday use, and they are so used in many countries.

However, there are some draw-backs to metric units for everyday purposes, for example: the SI unit of temperature is the kelvin (K) which does not relate to the temperatures of everyday life (even the related degrees Celsius compresses surface air temperatures into a narrow band); the kilometre is rather short compared with a mile; and the kilogram is large compared with a pound (500 g is sometimes used).

The purpose of this post is to explore a generic system of units that would be suitable for both everyday and scientific usage.

Start with temperature. For scientific purposes, the absolute minimum temperature is an important limit, so it should be set to zero or some multiple of 1000. The triple point of water is meaningful for both scientific and everyday usage. These two points suggest a scale with the absolute minimum set to –1000 degrees, and the triple point of water set to 0 degrees. One generic degree equals 0.27315 K. So a value of 100 equals 27 ºC or 81 ºF.

Read more →

New fallacies

There are several online lists of fallacious arguments: Fallacies, Full alphabetic list of fallacies, Logical Fallacies Handlist, List of fallacies, List of Fallacious Arguments, and especially Master List of Logical Fallacies, A list of Latin names is here.

Aristotle categorized rhetorical strategies under ethos, logos, and pathos. Ethos is an appeal to credibility or authority. Logos is an appeal to reason or evidence. Pathos is an appeal to feeling or emotion. Fallacies are also categorized as formal or informal, with many informal fallacies.

There is perhaps nothing new under the sun when it comes to informal fallacies, but there are at least new variations on old fallacies or fallacies that have not been adequately described. Here are some notes about these new fallacies:

Assailment-by-entailment is the fallacy committed by person B when they attribute to person A a belief that person B thinks is entailed by something person A has said, especially if person A has denied the offending belief. Its object seems to be ostracism or reputation damage. See here.

Controlling the conversation is a no discussion fallacy in which one party rejects reasoned dialogue with a dissenting party. This is usually committed by a stronger party in order not to allow a weaker, dissenting party to be heard. Common in issues that relate to a stronger party’s status. For example, the status of science in modern society is partly based on agreement among scientists, so dissent among scientists is ignored or controlled by the dominant party. This includes scientific publication and conference presentation.