(1) Set theory and logic, (2) number and algebra, and (3) space and time are three foundational topics that each have duals. Let us begin with the standard approaches to these three topics, and then define duals to each of them. To some extent, the original and the dual may be used together.
(1) Set theory and logic
A set is defined by its elements or members. Its properties may also be known or specified, but what is essential to a set is its members, not its properties. The notation for “x is an element of set S” is “x ∈ S”. A subset is a set whose members are all within another set: “s is a subset of S” is “s ⊆ S”. If subset s does not (or cannot) equal S, then it is a proper subset: “s ⊂ S”.
The null set (∅) is a unique set defined as having no members. That is paradoxical but not contradictory. A universal set (Ω) is defined as having all members within a particular universe. An unrestricted universal set is not defined because it would lead to contradictions.
The complement of a set (c) is the set of all elements within a particular universe that are not in the set. A union (∪) of sets is the set containing all members of the referenced sets. An intersection (∩) of sets is defined as the set whose members are contained in every referenced set.
Set theory has a well-known correspondence with logic: negation (¬) corresponds to complement, disjunction (OR, ∨) corresponds to union, and conjunction (AND, ∧) corresponds to intersection. Material implication (→) corresponds to “is a subset of”. Contradiction corresponds to the null set, and tautology corresponds to the universal set.