Galilean decompositions of the Lorentz transformation

The background for this post is here.

For space with time (3+1):

The gamma transformation (matrix Γ) expresses the time dilation of clocks and length contraction of rods with a relative speed:

\begin{pmatrix} \gamma & 0 \\ 0 & 1/\gamma \end{pmatrix} \begin{pmatrix} t \\ x \end{pmatrix} = \begin{pmatrix} \gamma t \\ x/\gamma \end{pmatrix} = \begin{pmatrix} t' \\ x' \end{pmatrix}

Use vector (t  x)T. The gamma transformation is conjugate to the Lorentz boost (matrix Λ) by the Galilean transformations (G, GT), i.e., GTΓG = Λ:

\begin{pmatrix} 1 & 0 \\ -\beta & 1 \end{pmatrix} \begin{pmatrix} \gamma & 0 \\ 0 & 1/\gamma \end{pmatrix} \begin{pmatrix} 1 & -\beta \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \gamma & -\beta \gamma \\ -\beta \gamma & \gamma \end{pmatrix}

or

\begin{pmatrix} 1 & -\beta \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1/\gamma & 0 \\ 0 & \gamma \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\beta & 1 \end{pmatrix} = \begin{pmatrix} \gamma & -\beta \gamma \\ -\beta \gamma & \gamma \end{pmatrix}

This expands to

\begin{pmatrix} 1 & -\beta \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1/\gamma & 0 \\ 0 & \gamma \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\beta & 1 \end{pmatrix} = \begin{pmatrix} 1 & -\beta \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1/\gamma & -\beta\gamma \\ 0 & \gamma \end{pmatrix} = \begin{pmatrix} \gamma & -\beta \gamma \\ -\beta \gamma & \gamma \end{pmatrix}

The matrix second from the right represents the Tangherlini transformation (or inertial synchronized Tangherlini transformation).

For time with space (1+3):

Use vector (x  t)T. The dual gamma transformation (matrix Γ) expresses the time dilation of clocks and length contraction of rods with a relative pace:

\begin{pmatrix} \gamma & 0 \\ 0 & 1/\gamma \end{pmatrix} \begin{pmatrix} x \\ t \end{pmatrix} = \begin{pmatrix} \gamma x \\ t/\gamma \end{pmatrix} = \begin{pmatrix} x' \\ t' \end{pmatrix}

The dual gamma transformation is conjugate to the dual Lorentz boost (matrix Λ) by the dual Galilean transformations (GT, G), i.e., GTΓG = Λ:

\begin{pmatrix} 1 & 0 \\ -\beta & 1 \end{pmatrix} \begin{pmatrix} \gamma & 0 \\ 0 & 1/\gamma \end{pmatrix} \begin{pmatrix} 1 & -\beta \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \gamma & -\beta \gamma \\ -\beta \gamma & \gamma \end{pmatrix}

or

\begin{pmatrix} 1 & -\beta \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1/\gamma & 0 \\ 0 & \gamma \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\beta & 1 \end{pmatrix} = \begin{pmatrix} \gamma & -\beta \gamma \\ -\beta \gamma & \gamma \end{pmatrix}

Note that superluminal motion is excluded in both space-time and time-space.